Proof: L’Hopital’s theorem (special case )

Statement:

If

  • f(x) and  g(x) are differentiable on an open interval containing a
  • f(c)=g(c)=0
  • g'(x)\neq 0 for x  near (but not equal to) c

Then

\lim_{x \to c}\frac{f(x)}{g(x)}=\lim_{x \to c}\frac{f'(x)}{g'(x)} provided that the limit on the right side of the equations exists.

Proof:

Assume the above conditions. Then,

\lim_{x \to c}\frac{f(x)}{g(x)}=\lim_{x \to c}\frac{f(x)-0}{g(x)-0}=\lim_{x \to c}\frac{f(x)-f(c)}{g(x)-g(c)}

Dividing the right-hand expression by x-c , we get

\lim_{x \to c}\frac{\frac{f(x)-f(c)}{x-c}}{\frac{g(x)-g(c)}{x-c}}=\frac{\lim_{x \to c}\frac{f(x)-f(c)}{x-c}}{\lim_{x \to c}\frac{g(x)-g(c)}{x-c}}=\frac{f'(c)}{g'(c)}=\lim_{x \to c}\frac{f'(x)}{g'(x)}

Therefore,

\lim_{x \to c}\frac{f(x)}{g(x)}=\lim_{x \to c}\frac{f'(x)}{g'(x)}, which is what we sought to prove.