Proof: d/dx sinx = cosx

\frac d{dx}\sin x=\displaystyle\lim_{\triangle x \to 0}\frac{\sin(x+\triangle x)-\sin x}{\triangle x}

From the basic trigonometry identity for the sine of two added angles:

\sin(x+\triangle x)=\cos x \sin \triangle x + \sin x \cos \triangle x       therefore,

\begin{array}{rcl}\frac{d}{dx}\sin x&=&\displaystyle\lim_{\triangle x \to 0}\frac{\cos x \sin \triangle x + \sin x \cos \triangle x -\sin x}{\triangle x}\\ &=&\displaystyle \lim_{\triangle x \to 0}\left( \frac{\cos x \sin \triangle x}{\triangle x} + \frac{\sinx \cos \triangle x - \sin x}{\triangle x}\right)\\ &=& \displaystyle \lim_{\triangle x \to 0} \cos x \left(  \frac{\sin\triangle x}{\triangle x}\right) + \displaystyle \lim_{\triangle x \to 0} \sin x  \left(\frac{(\cos \triangle x - 1)}{\triangle x}\right)\\ &=&  \displaystyle \lim_{\triangle x \to 0} \cos x \left(  \frac{\sin\triangle x}{\triangle x}\right) - \displaystyle \lim_{\triangle x \to 0} \sin x  \left(\frac{(1-\cos \triangle x )}{\triangle x}\right)\\  &=&  \displaystyle \lim_{\triangle x \to 0} \cos x \left(  \frac{\sin\triangle x}{\triangle x}\right) - \displaystyle \lim_{\triangle x \to 0} \sin x  \left(\frac{(1-\cos \triangle x )}{\triangle x}\right)\\ &=&  \cos x \displaystyle \lim_{\triangle x \to 0} \left(  \frac{\sin\triangle x}{\triangle x}\right) - \sin x  \displaystyle \lim_{\triangle x \to 0} \left(\frac{(1-\cos \triangle x )}{\triangle x}\right)\end{array}

However,

\displaystyle \lim_{\triangle x \to 0} \left(  \frac{\sin\triangle x}{\triangle x}\right) = 1   (see proof)

and

\displaystyle \lim_{\triangle x \to 0} \left(\frac{(1-\cos \triangle x )}{\triangle x}\right)=0   (see proof)

Therefore,

\begin{array}{rcl}\frac{d}{dx}\sin x &=& \cos x (1) - \sin x(0)\\&=&\cos x  - 0\end{array}

That means that

\frac{d}{dx}\sin x=\cos x