Proof: limit (1-cos x)/x = 0

We want to evaluate the expression

\displaystyle\lim_{x \to 0}\frac{1-\cos x}{x};\quad\text{multiply by}\,1=\frac{1+\cos x}{1+\cos x}\quad\Rightarrow

\begin{array}{rcl}\displaystyle\lim_{x \to 0}\frac{1-\cos x}{x}\cdot\frac{1+\cos x}{1+\cos x}&=&\displaystyle\lim_{x \to 0}\,\frac{1-\cos^2 x}{x\cdot(1+\cos x)}\\&=&\displaystyle\lim_{x \to 0}\,\frac{\sin^2 x}{x\cdot(1+\cos x)}\\ &=&  \displaystyle\lim_{x \to 0}\,\frac{\sin x \cdot \sin x}{x\cdot(1+\cos x)}\\ &=& \displaystyle\lim_{x \to 0}\frac{\sin x}{x}\cdot\displaystyle\lim_{x \to 0}\frac{\sin x}{1+\cos x}\end{array}

But

\displaystyle\lim_{x \to 0}\frac{\sin x}{x}=1   (see proof)

and

\displaystyle\lim_{x \to 0}\frac{\sin x}{1+\cos x}=\frac{0}{1+0}=0

Therefore

\displaystyle\lim_{x \to 0}\frac{1-\cos x}{x}=0

which is what we sought to find.