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I. Introduction 

In this day and age, the amount of information that traverses the internet increases every day. Much of 
this information is sensitive and must be kept private, especially where e-commerce is concerned. The 
primary manner in which this is accomplished is so-called asymmetric key encryption. The prototype 
for this type of encryption is RSA encryption, named after its founders, Ron Rivest, Adi Shamir and 
Leonard Adleman. The practical implementation of this algorithm is complex and tedious. While the 
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theory behind this method is not exactly simple, especially for laymen like myself, I find it both 
interesting and ingenious. It is this theory of RSA that is the subject of this article. 

An analogy that may help to elucidate the basic paradigm is as follows: 

Say Alice wants to send a confidential message to Bob and keep it from Eve, who’s always trying to 
intercept it. Bob sends an open padlock to Alice, a padlock a copy of which Eve or anyone else who 
wants one can have. Alice puts her message in a box and locks it with the padlock. The nature of the 
box and lock are such that no one can cut off the lock, cut a hole in the box or otherwise access the 
message except by using the key to open it, a key that only Bob has. Alice sends the locked message 
back to Bob, in plain view of Eve, who, without the key, can’t open it. When Bob receives the box, he 
easily opens the box and reads the message. This is an example of a one-way function. The padlock is 
easy to lock but hard to unlock. Unless, of course, you have the key. 

In RSA encryption, the functions of the physical lock and key are accomplished with mathematics. 
The padlock function is performed by a thing called the public key while the function of the key that 
Bob uses to unlock the padlock is referred to as the private key. 

II. Necessary Mathematics 

II.A Modular arithmetic1 

The basis of this algorithm is modular arithmetic, therefore, an introduction to this subject is in order. 
Modular arithmetic is clock arithmetic. Consider a clock with 8 numbers on its face as follows: 

 
 

Traveling in the clockwise direction is considered positive; traveling in the counterclockwise direction 
is considered negative. If you start at 0, there are an infinite number of ways that you could get to the 
the number 3. Two of these are illustrated in the diagram. The red arc indicates that you could start at 
0 and travel three units in the positive direction (i.e, clockwise). A second way is to start at 0 and 
travel 11 units clockwise. Another way (not illustrated) would be to start at 0 and travel 19 units 
clockwise. Notice that if you take the number of units traveled and divide it by the number of units 
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around the face of the clock (in this case 8) you get a remainder of 3 (which is the number at which 
you end up in each case. These states can be summarized by the following 3 equations: 

3 = 3 mod 8 
3 = 11 mod 8 
3 = 19 mod 8 

In these equations, "mod" stands for modulus. It corresponds to the number of units around the face of 
the clock. The number to the left of "mod" is the dividend - the thing into which the modulus is 
divided. In each case, this operation results in the a remainder, the number on the left side of the 
equation, in these cases, 3. 

Another way of saying all this is the following: 

 

Take the second equation above. In words, this equation says: 11 is congruent to 3 mod 8. In this 
equation, 8, again is the divisor (the thing that does the dividing); 11 is the dividend (the thing that 
gets divided by the divisor); and 3 is the remainder. 

All of the above is summarized in the following diagram: 
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The last issue to be discussed in this section is one of nomenclature. The expression  means 

 goes into  evenly, without a remainder. For example,  (i.e., 8 divides 18-2—which 
equals 16—two times, without a remainder). There's a lot more to modular arithmetic than is 
presented here but this will do for sake of this discussion. 

II.B Exponents and roots2 

means multiply together times. is referred to as a base. is referred to as an exponent. For 
example, . In words, we would say that 2 raised to the 3rd power equals 8, or 2 to the 
third power equals 8. 
 

means find a number, , that when multiplied together  times, will equal b. For example, means 
find a number that, when multiplied together 3 times will equal 8. In this case, ,  and . 

, thus . In words, we would say that the cube root (or third root) of 8 is 2. Or2 × 2 × 2 = 8 = 23 √3 8 = 2  
alternatively, 2 is the cube root (or third root) of 8. If  (i.e., 

) we would say that is the square root of . If , (i.e., ), we would say that is 
the 7th root of , and so forth. Note that if no is specified, then is assumed to be 2. For example, 

. 
 

can also be expressed as an exponent. Specifically, . For example,  and 

. 
 
When two exponential expressions have the same bases (i.e., the same ), if you multiply the two 
expressions together, to get the answer, you add the two exponents together and raise the base number 

to that sum. For example, , or more generally, . 
The following might be helpful in showing why this is true: . .  means 

multiply times  which equals  which equals  which is another way 
of saying . Notice that if you simply add the exponents of the exponential expressions to be 
multiplied, this will tell you how many times to multiply the base number together with itself. And the 
number of times you multiply the base number together with itself is, by definition, the exponent to 
which you raise the base number to get the answer. 
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If you have two exponential expressions have the same bases (i.e., the same ), if you divide one of 
the expressions into the other, to get the answer, you subtract the exponent of the divisor (the 
expression thats doing the dividing) from the exponent of the dividend (the expression thats being 
divided by the divisor) and raise the base number to that difference. For example, 
 

 

In general, 

 

 
If you have an expression with an exponent, and you raise that expression to an exponent, you 
multiply the exponents together and raise the base number to that new exponent. For example, 
 

 

 

Or more generally, 

 

 
 
II.C Logarithms3 

 
Definition: if then . In words, the logarithm ( ) of some number, , is theax = y og  yl a = x ogl y  
exponent, , that you need to raise the base number, , to to get the number .x a y  
 
Properties: 
 
(1) Product rule 

 
a. Statement: og  a og  a log  bl x · b = l x +  x  
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b. Proof 

 
Let  og  a nl x =  ⇒  xn = a ⇒ xlog ax = a  
Let x og  a l = a ⇒ l x = l  
     x og  b m = b ⇒ l x = m  
     x og a n = a · b ⇒ l x · b = n  
xn = xl · xm  

;xn = x(l+m)  therefore 
;n = l + m substituting 

+og al x · b = og  al x og  bl x  
 

(2) Quotient rule 
 

a. Statement: og  og  a log  bl x b
a = l x −  x  

 
b. Proof 
 

Let  og  a nl x =  ⇒  xn = a ⇒ xlog ax = a  
Let x og  a l = a ⇒ l x = l  
     x og  b m = b ⇒ l x = m  
     x og a n = a · b ⇒ l x · b = n  
xn = xl

xm  
;xn = x(l−m)  therefore 

;n = l − m substituting 
-ogl x b

a = og  al x og  bl x  
 

(3) Power rule 
 

a. Statement: og  a  log  a l x
c = c x  

 
b. Proof 
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Let  ;og  a bl x =  ⇒  xb = a  multiply by c  
 log  ac x = b · c  

;(x )b c = xbc = ac this means that 
;og  a c l x

c = b substituting 
og  a  log  a l x

c = c x  
 

 
(4) Change of base rule 
 

a. Statement: og  xl a = log ab

log xb  

 
b. Proof 
 

Let ;og  x yl a =  then 
x;ay = take log to the base b of both sides 

og  a og x;l b
y = l b apply power rule 

;y og  a og  xl b = l b divide both sides by og  al b  

;y = log ab

log xb substitute for y  

og  xl a = log ab

log xb  
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 II.D Summary of mathematics 
 
1. Modular arithmetic 

 

 
2. Exponents and roots 
 

a. Exponent 
 

ai
n = a1 · a2 · a3 · … an  

 
an · am = a(n+m)  
 

an
am = a(m−n)  

 
(a )m n = am·n  
 

b. Root 
 

if y = an ⇒ √n y = a  
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√n y = y n
1 = a  

 
3. Logarithms 
 

if then ax = y og  yl a = x  
 
og  a og  a log  bl x · b = l x +  x  

 
og  og  a log  bl x b

a = l x −  x  
 
og  a  log  a l x

c = c x  
 
og  xl a = log ab

log xb  

 

III. Proof 

III.A Proof of Euler’s Totipotent Theorem4 

The mathematical function that’s used to serve as the lock and key described in the introduction to this 
article is called a trapdoor function. The equation, itself, is easy to solve but it has an inverse that’s 
difficult to solve. Hopefully, how such a function can be used for encryption will become more clear 
by the end of this discussion. The theorem on which RSA encryption is based is Euler’s Totipotent 
theorem. This is the equation that describes that theorem: 

 

 
 
where,  
 

 tells us how many numbers are on “the face of the clock” that we’re 
going to use to do modular arithmetic; said differently,  is the number 

we’re going to divide into to get a remainder of 1. 
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, Euler’s totient function,5 is a function that counts the number of 

relatively prime positive integers less than or equal to . By positive 
integers, I mean whole numbers like 1, 2, 3, 4, etc. Relatively prime 
means that the integer and   share no common factors other than 1. 

is a number. In this case we’re using it as an exponent. In the 

equation above, it means to multiply together with itself  times. 

 
Here are some examples that demonstrate the concept of relatively prime. 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s examine  in more detail to clarify its meaning. In order to do this, we have to start by 

making a list of numbers less than 9 that are relatively prime to 9 (i.e, that share no factor with 9 other 
than 1): 
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1 is relatively prime to everything because 1 is the only factor of 1, so 

include 1.  
No number other than 1 divides both 2 and 9 evenly, so include 2 in our 

list.  
3 divides evenly into 3 and 9; that is, 3 and 9 share a factor of 3 so 

exclude 3.  
No number other than 1 divides both 4 and 9 evenly so include 4 in our 

list.  
No number other than 1 divides both 5 and 9 evenly so include 5 in our 

list.  
3 goes into 6 twice and 9 three times; 6 and 9 share a factor of 3 so 

exclude 6.  
No number other than 1 divides 7 and 9 evenly so include 7 in our list.  
No number other than 1 divides 8 and 9 evenly so include 8 in our list. 
So here’s our list: 1, 2, 4, 5, 7, 8. Count the numbers in our list: 6 - 

that’s the value of . 

 

Notice something. For any prime number ,  is . This makes sense since the definition of a 

prime number is that the only factors it has are 1 and itself. You can’t include the number itself in 

 because any number goes into itself once. For example, for  = 7, 7 goes into 7 once, so when 

calculating , you have to exclude 7. But you would include all the other numbers from 1 to 6 in 

enumerating . 

 

Now back to Euler’s totient theorem. That’s the equation we started with: . First of all, 
it only works if  and  are relatively prime to each other. Now let me prove it to you. We’ll be 
abstract and use letters to start, then put in some numbers to make it clearer. 

 
Let’s find a set of numbers that consists of all the positive integers that are relatively prime to , like 
we would do if we were trying to figure out Euler’s totient function for that number. Notice that when 
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you do this, all of the members of the set, called the set’s elements, have to be different from each 

other (i.e. each number is unique.) Call that set .  would consist of , , ,  where  

are numbers relatively prime to . (In the example of , the first element of the set,  is 1 

because, as we’ve already said, 1 is relatively prime to all numbers. The other elements are , 

, , , .  is 6, so — or the  (the 6th) relatively prime number in 

the series—in this case, that relatively prime number is 8.) When you define a set in math, you put the 

elements of the set in curly brackets. So . Now we’ll define a second set, , by 

multiplying each element in  by the number, . So . We’re just 

multiplying each element of  by the same number, so like , all the elements of  have to be 
unique. Now let’s take the  of sets  and . That means take  of each element in  to 
make a new set, , and take  of each element in  to make a new set, . It turns out, if we 
do this, and  will be the same. To see this, let’s put in some numbers. 

 
Let , . Notice that 5 and 8 are relatively prime. (As stated at the outset, they have to be or 
this thing won’t work.) A different way of putting it is that the greatest common divisor of 5 and 8 is 
1. Or, said yet another way, the greatest number that divides both 5 and 8 evenly is 1. Anyway, 

 

 

 
So for each element, we’re going to take . Mathematically speaking, we can write this as 

; , in this case, being 1, 2, 3 or 4. 
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For  For  

  

  

  

  

 

So  and ; From this, you can see that and have the same 

elements. 
 

Since the elements of the sets are the same, if the elements of each set are multiplied together with 
each other, the resulting products should be equal: 

 

 

 
But remember where these numbers came from: 

 

 

 

It’s easy to prove that 6 
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From what I’ve already told you 

   a · b = q n( 1 + r1 ) (q n )2 + r2  

q n r= q1 2
2 + (q r r )1 2 + q2 1 n + r1 2  

= q n nq1 2
2 + (q r r )1 2 + q2 1 n + q3 + r3  

= (q q n r r )1 2 + q1 2 + q2 1 + q3 n + r3  
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Which is what we were trying to prove. Let’s check it out by trying some numbers: 
 

 

 

. 
 

That is, 14/8 = 1 with remainder 6; 150/8 = 18 with the same remainder: 6. 
By similar arguments to those just employed, you can generalize this result and show that any number 
of terms can be multiplied together on each side. Like this: 

 

 

 
Now take mod 8 of the following equation: 

 

 

 
You get: 

 

 

 

 

 
This gives 
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; Divide both sides by  

 
 

This means, if you divide  by 8, you get a remainder of 1. Hmm, that looks a lot like the Euler’s 
Totipotent theorem equation. Recall that m = 5 and n = 8. Making these substitutions, the above 
equation becomes: 
 

 
 

But notice that the exponent 4 is the same as . It has to be because we multiplied times each 

element in the set  to get set  and the number of elements in set  is .  So, 

 

 
 
That’s the Euler’s Totipotent theorem expressed as a standard equation with an equal sign instead of 
as a congruence relationship, as it was first presented above. We could put in variables and make the 
above demonstration more rigorous, but I think you get the idea. 
 
There are a few other things that need to be discussed before it can be shown how the above equation 
is used for encryption. 
 

III.B Deriving  
 

You can put in any number you want for . . . No matter how many 
times you multiply one with itself, you still get 1. Let’s go back to this equation for a minute: 

. Both sides of this equation are equal to 1, so if we raise both sides of this equation to 
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the power, we don’t change the value of either side. Recall from the Exponent section you raise a 
number that is already raised to an exponent, by another exponent, you multiply the exponents 

together. For example, . Equivalently, . So 

; therefore, . 

 

Next multiply both sides of this equation by . We get  which means 

. Any number (or variable) raised to the 1rst power is just that number or variable. 

So . Again, recall from the Exponents review section that when you multiply a number raised 
to one exponent by the same number raised to another exponent, you get the number raised to the two 

exponents added together. Example: . Therefore,  is 

equivalent to . 
 
III.C Product of 2 primes 
 

The number can be broken down into the product of two prime numbers, and : 

 

 

 

III.D Proof of 7 

 
III.D.1 Example 

 

. To see this, the best thing to do is start with an example. Note before starting that 

for this to work, and  need to be relatively prime (that is, their greatest common denominator is 1, 

or equivalently—as has been stated previously—the only common factor they share is 1). 
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Consider . List the relatively prime numbers that you need to calculate 

and put them into, set : 

 

 
 

Call the elements in , . 
 
Next, list the relatively prime numbers that you need to calculate  
 

 

 
 

Put those numbers into a set in which you pair numbers from  and . Call it : 
 

 
 

Call the first pair of the elements of , . Call the second pair of the elements of 

, . 
 

Now we need to count elements in each set. By definition, the number of elements in is , 

in this case, 12. To find the number of elements in , we have to consider how we made the set. 

Namely, we took each element from and paired it with each element of : 

 
From  

From 

 

1 2 3 4 5 6 

1 1,1 1,2 1,3 1,4 1,5 1,6 
2 2,1 2,2 2,3 2,4 2,5 2,6 
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You can see from this table that the number of elements in the set is just the number of rows times the 
number of columns: 2 x 6. If the table were a 3 by 5 table, then the number of elements would be 3 x 5 

= 15. In every case, the number of rows is and the number of columns is . Therefore, in 

general, the number of elements in such a set is . 
 

III.D.2 Introduction to proof of one-to-one correspondences between 

elements of sets and  
 

The next thing to do is to prove that there is a one-to-one correspondence between elements of sets 

and . To do this, we need to associate elements  from with paired elements 

from . It looks like this: 
 

 
     1mod3, 1mod7 ,  1 →   → 1 1  
     2mod3, 2mod7 ,  2 →   → 2 2  
     4mod3, 4mod7 ,  4 →   → 1 4  
     5mod3, 5mod7 ,  5 →   → 2 5  
     8mod3, 8mod7 ,  8 →   → 2 1  
0  0mod3, 0mod7 ,  1 → 1 1 → 1 3  
1  1mod3, 1mod7 ,  1 → 1 1 → 2 4  
3  3mod3, 3mod7 ,  1 → 1 1 → 1 6  
6  6mod3, 6mod7 ,  1 → 1 1 → 1 2  
7  7mod3, 7mod7 ,  1 → 1 1 → 2 3  
9  9mod3, 9mod7 ,  1 → 1 1 → 1 5  
0  0mod3, 0mod7 ,  2 → 2 2 → 2 6  

 
You can see from the table that, in this case, there is, in fact, a one-to-one correspondence between 

elements of sets and . However, to generalize this result, we have to show: 

 

1. Different elements in are associated with different pairs in  
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2. Each pair in  is associated with a unique element in  

 

III.D.3 Different elements in are associated with different pairs in 

 
 

To accomplish #1, suppose and are different elements of but are both mapped to the same 

element in . If this were the case, then, for example: 

 

 

 

Let’s take the case of . This means 

 

 

 
Remember, 

 
means modP  a1 ≡ a2 1 a1 = P 1 · y + a2  

and 
means modP  a1 ≡ a2 2 a1 = P 2 · y + a2  

where 
and are integers (i.e., not fractions) x y  

 
Rearranging the right-sided equations: 
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That means that  divides  evenly (i.e., without a remainder). Mathematically, this is expressed as 

follows: . Why is this true? Well, , ,  and  are all integers.  and are relatively 

prime. That means that they share no common factors except 1. Therefore, if you divide  into , 

you get a fraction. If you multiply a fraction by an integer, like , you may make their product, , an 

integer but it’s also possible that their product may be a fraction. But that won’t do because we’ve 

already said that  is definitely an integer. In order to make  an integer,  would have to divide 

evenly into y to get an integer. Then when you multiply that integer, y/ , with another integer, , 

their product, , is sure to be an integer. 
 
This diagram may help you visualize it better: 
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So if  divides  evenly, that means that  where  is a positive integer. We’ve seen 

previously that . Substituting , we get . But  is 

another way of saying , just as  and 

. 

 

So after all this, we end up with . For this equation to be true,  must equal . But 

this contradicts our original premise that  and  are different. Why must  =  in the equation 

? Because all of the elements of set  are relatively prime to, and less than, . 

When you take  of , you divide  into . Since every element of set  is less than 

,  goes into every element, , zero times. The only way to make the equation 

 true is if the remainder, , equals . Another way of saying it is ;modP Pa1 ≡ a2 1 2  

 so . 

 

The above argument shows that it’s not possible for any two elements of  to map to the same 

element in . Therefore, it must be that only one element from can map to a given element of . 

So that proves #1. 
 

 

III.D.4 Each pair in  is associated with a unique element in  

(proof of existence) 
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III.D.4.a Chinese Remainder Theorem 
 

To prove #2, we need to show that each paired element of , , maps to a unique element of ,

. Mathematically, this can be expressed as follows: 
 

 

 
This is essentially the Chinese Remainder Theorem so we need to prove that theorem. 

 

The equation  means that if you multiply  by some integer (call that integer ) then add 

a remainder of  to it, you get : . Likewise,  means where  ismodPa = c 2 z  a = P 2 + c z  

any integer. Since the right side of both of these equations are equal to :a  
 

y zP 1 + b = P 2 + c and 

 where and  are just integersy zP 1 = P 2 = c − b c b  
 

The last equation above is called Bezout’s identity8. 
 
III.D.4.b Bezout’s identity I 
 
The proof of Bezout’s identity is as follows: 
 

 and  are positive integers, both of which are not zero. By definition, let  in the above 

equation equal . Let >0. We’ll call  a linear combination of  and . Let beg y zm = P 1 + P 2 P 2  

the set of all linear combinations that satisfy the conditions of . Because both  and  are not both 

zero, there must be at least one value for . Therefore,  has at least one element and so is not an 

empty set. There’s a thing called the well-ordered principle9 that states that, given a nonempty set of 
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natural numbers (i.e., positive integers), such a set must have a least element. This is so intuitive that 
we won’t prove it in this article but a proof of this principle can be found here. At any rate, applying 

the well-ordered principle,  must have a least element. 

 

Now choose  and  so that  is that least element. Furthermore, choose  such that it is theg  

greatest common divisor of  and .P 2  

 

Since  is a common divisor of  and , it must also be a divisor of . This can be seen asg P 2  

follows: 
 

If  is a divisor of , that means that  and   where  and   areg gP 1 = k gP 2 = l l  

integers. 
Thus, 

y z yg zgm = P 1 + P 2 = k  + l = (ky z)+ l g  

/g y zm = k + l  

, ,  and  are all integers.l   

Therefore  is an integer. 

Therefore  yields an integer which means that  is a divisor of .g  

In particular,  must be  or else  would be a fraction (which it can’tg ≤  

be because we just showed it was an integer). 
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III.D.4.c Bezout’s identity II 
 

Next,  is also a common divisor of  and  (i.e.  divides both  and  evenly). The proof ofP 2 P 2  

this is as follows: 
 

Let ; , ,  and  are all integers;  and  are not bothy z  m = P 1 + P 2 > 0 P 2  

0 

Furthermore, choose  and  such that  is the least positive linear combination 

of  and .P 2  

We’re trying to divide  into  and . Let’s consider the case of dividing P 2  

into  since the case of dividing  into  is similar.P 2  

When you divide  into , you get an answer, , and a remainder, . You canr  

get back  by multiplying  by  and adding the remainder, . That is,r  

 

where mP 1 = q + r  0 ≤ r < m  

 
 
This is called the quotient-remainder theorem10. It’s so intuitive that we won’t 

prove it here although a proof can be found at the link listed below. 
Substituting in from our original definition of  above, we get 
 

m P y P zr = P 1 − q = P 1 − q (P y z)1 + P 2 = P 1 − q 1 − q 2
 

 
rearranging: 
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 r = (1 y)− q P 1 + (− z)q P 2
 

 
Look at the form of this last equation. It means that  is a non-negative linearr  

combination of  and , non-negative because we already said that  isP 2 r  

greater than or equal to zero (i.e., ). 0 ≤ r < m  

But we also said that  is the least positive linear combination of  and .P 2  

This can’t be true if  is greater than 0 since  is also less than . If that werer r  

true then  would be the least positive linear combination of  and . Ther P 2  

only way that  could be the least positive linear combination and  could ber  
 and <  is if . ≥ 0  r = 0  

But if , that means that  divides  evenly, which is what we were trying r = 0  

to prove. 
 

As stated above, the proof that  divides  evenly is similar.P 2  
 
III.D.4.d Bezout’s identity III 
 

In the previous section, we showed that , the greatest common divisor of  and  , is . Ing P 2 ≤ m  

this last section, we showed that  is also a divisor of  and . But it can’t be true that P 2 g < m  

because  is the greatest common divisor. Therefore, it must be true that  equals . Now do someg g  
algebraic manipulation: 
 

; rearrange thisg = m  
; recall that  and  ; substitute for  and m = g y zm = P 1 + P 2 g = c − b m g  

y zP 1 + P 2 = c − b  
 

; That’s what we were trying to prove.y zP 1 + P 2 = c − b  
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 was derived from  and . We showed thaty zP 1 + P 2 = c − b modPa = b 1 modPa = c 2

 is true. Therefore,  and  must be true.  andy zP 1 + P 2 = c − b modPa = b 1 modPa = c 2 modPa = b 1  
 is a mathematical expression of the statement that each pair  from set  maps to anmodPa = c 2 cb S2  

element, , from set . Since  and  is true, then the statement that ita S1 modPa = b 1 modPa = c 2  
mathematically represents must be true. This proves that such a correspondence between  to S2 S1  
exists. What remains to be proven is that each of those ‘ ’ element to which each ‘ ’ pair maps arecb  
unique (i.e., there’s only one ‘ ’ pair for each ‘a’).cb  
 
III.D.4.e Bezout’s identity IV 
 
 
That proof is similar to one we’ve already seen. It goes like this: if and  both satisfya = n a = n′  

 
 and modPa = b 1 modPa = c 2  

 

then and . If that’s true, then  and . And because modPn ≡ n′ 1 modPn ≡ n′ 2 |P 1 (n )− n′ |P 1 (n )− n′  

and  are relatively prime, . That means , which means that  and|P 1 · P 2 (n )− n′ modP Pn ≡ n′ 1 2  

 are the same modulo  (i.e.,  and  correspond to the same element of  which means thatn′ n′  

each pair ‘ ’ in set  maps to only one element of ).cb  

 
III.E Completion of the Main Proof 
 

So we’ve finally seen why . Now what we need to do is show how this fact can be 

used in RSA encryption. 
 
Recall that  of any prime number is  (i.e., one less than the number). So, ϕ (P )  P − 1  

 
 and ; then, ϕ (P )1 = P 1 − 1  ϕ (P )2 = P 2 − 1  
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 ϕ (n) = ϕ (P )1 · ϕ (P )2 = (P )1 − 1 (P )2 − 1  
 

Next, define the product  such that e · d  e · d = k · ϕ (n) + 1  
 

Remember the equation ? Substitute  for . We gete · d  k · ϕ (n) + 1  
 

 mod nm = me·d  
 

From , we find that  e · d = k · ϕ (n) + 1 d = e
k·ϕ(n)+1 = e

k·(P −1)(P −1)+11 2  
 

We picked and . That’s how we came up with . We also choose . So we have all the 

information needed to determine . , it turns out, is the secret key needed to decode a message sentd d  
to us. Let me show you how it all works. 
 
IV. Application of the formula11 
 
If Bob wants to receive a message from Alice, he sends his public key, which consists of the numbers 

 and , to her. Eve—and anyone else who wants it—has access to that key. Since computers onlye n  
understand numbers, Alice’s message consists of a string of numbers. Each number stands for a 
character like you can type on a keyboard. There is a standardized system of translation from 
characters to numbers that computers use, called ASCII, which stands for American Standard Code for 
Information Interchange. Let’s say Alice’s message is just the letter J. The ASCII code for J is 74. 74 
would be the value of . Alice uses the values of ,  and  to generate an encryptedc e n  
message—let’s call it  —according to the following equation:c  

 
 mod nc = me  

 
Alice sends the encrypted message, , to Bob. We said that Alice’s message is just the letter J. Inc  
reality, most messages are long train of characters which translate into a number with a long string of 
digits. In actuality, additional digits are interjected into the encrypted message to make it more secure 
(called padding). However, the details regarding padding are far too practical for this discussion. The 
bottom line for this article is that Eve can see the encrypted message but can’t decrypt it.” 
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But why can’t Eve decrypt it? After all, she knows ,  and . She should be able to figure out .c e n m  
The reason that she can’t is because RSA encryption makes use of modular arithmetic. Remember, 
 

 means  where q is some integer mod nc = me nqme =  + c  
 

therefore, 
 

m = √e n · q + c  
 

As we’ve said, Eve knows ,  and —they’re just numbers that anyone can see. However, she hasc e n  

no idea what  and  are. What you have, then, is one equation with two unknowns. There is no 

unique solution to such an equation;  and , literally, could be anything. Presumably, Eve could try 

putting in values for  and  by trial and error, then check to see if the message encoded by the 

string of numbers that is , makes sense. However, because  and  are so large, the range of 

values that  could be would be astronomical. The time it would take to test values of  and find the 
correct answer would be so long as to make this method impractical, on a par with trying to factor  
and guess the private key. (How long would it take? See below.) 
 
Bob, however, has the secret key, , which he can use to recover the message, , by using thed  
equation 

 
 mod nc = me  

 

Eve knows  and could decrypt the message if she could factor  since the factors of  are and e

, and and  determine . Why can’t she do it? Because we make are and  very large; so larged  

that it would be impractical to factor . 
 
How large do we make ? Typical values of  are 1024 or 2048 bits. How long would it take to 
factor such a number (and what is a bit)? These are questions that will be discussed in the second 
installment of this subject. 
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